男友太凶猛1v1高h,大地资源在线资源免费观看 ,人妻少妇精品视频二区,极度sm残忍bdsm变态

Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Chinese scientists discover genetic switch for organ regeneration in mammals

Xinhua | Updated: 2025-06-27 16:33
Share
Share - WeChat

BEIJING -- Chinese scientists have achieved a major breakthrough in regenerative medicine by identifying a genetic switch that can restore healing abilities in mammals, a discovery that could revolutionize treatments for organ damage and traumatic injuries.

According to the study, published on Friday in the journal Science, flipping an evolutionarily disabled genetic switch involved in Vitamin A metabolism enabled the ear tissue regeneration in rodents.

Unlike animals such as fish and salamanders, mammals have limited capacity to regenerate damaged tissues or organs fully. The ear pinna, varying widely in its ability to regenerate across species, makes an ideal model for studying how regenerative capacity has evolved in mammals.

"As an apparently beneficial trait, regeneration is well-maintained in some animals but lost in others," said Wang Wei, who led the study. "Understanding what has occurred during animal evolution to drive the loss or gain of regeneration will shed new light on regenerative medicine."

The study revealed that non-regenerative mammalian species fail to sufficiently activate the gene Aldh1a2 following injury, a critical deficiency that impairs their regenerative capacity compared to species capable of natural tissue repair.

The researchers from the National Institute of Biological Sciences (NIBS), BGI Research and Northwest A&F University found that low expression of this gene caused the insufficient production of retinoic acid (RA).

They then demonstrated that switching on the gene or supplying RA using a gene enhancer from rabbits was sufficient to restore the regenerative capacity in mice and rats.

RA signaling is believed to be broadly involved in different contexts of regeneration, including bone, limb, skin, nerve and lung regeneration.

"This study identified a direct target involved in the evolution of regeneration and provided a potential framework for dissecting mechanisms underpinning the failure of regeneration in other organs or species," said Wang from NIBS.

This could "potentially provide a strategy for promoting regeneration in normally non-regenerative organs," commented Stella M. Hurtley, the journal's editor.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 延庆县| 曲松县| 共和县| 隆回县| 黑河市| 镇坪县| 抚州市| 新丰县| 观塘区| 五莲县| 东安县| 射洪县| 杂多县| 黎平县| 洛隆县| 酉阳| 庄河市| 建宁县| 九江市| 扎兰屯市| 阿拉善左旗| 开鲁县| 洛扎县| 新泰市| 荔浦县| 镇安县| 西贡区| 乡城县| 田东县| 天峨县| 张家口市| 兴和县| 南涧| 桃园县| 庆阳市| 新闻| 西乡县| 泾阳县| 湘潭市| 余干县| 土默特左旗|