男友太凶猛1v1高h,大地资源在线资源免费观看 ,人妻少妇精品视频二区,极度sm残忍bdsm变态

Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Chinese researchers develop high-efficiency flexible thermoelectric material for wearables

Xinhua | Updated: 2025-06-11 16:51
Share
Share - WeChat

BEIJING -- Chinese researchers have developed a highly efficient, flexible thin-film material for power generation, representing a major breakthrough in flexible power technology for smart wearables, the Science and Technology Daily has reported.

While wearable devices such as smartwatches and fitness trackers are advancing rapidly, their reliance on batteries -- which necessitates frequent replacements or charging -- remains a barrier to wider adoption.

Thermoelectric technology, which converts body heat directly into electricity, presents an ideal solution due to its safety, eco-friendliness and lack of mechanical components. However, current flexible thermoelectric materials demonstrate low performance, and most power-generating devices use planar structures that fail to produce adequate electricity for electronic devices.

The research team from the Institute of Electrical Engineering under the Chinese Academy of Sciences employed a chemical solution method to synthesize fine silver selenide (Ag?Se) nanowires. These were combined with graphene and applied to a porous nylon substrate.

Using filtration and rapid hot-pressing techniques, the team produced an ultra-high-performance flexible power-generating film. Its innovative structure delivers the highest power density ever reported for flexible thermoelectric devices using silver selenide.

The team then constructed a three-dimensional miniature arch bridge-shaped generator incorporating 100 paired thermoelectric units made from this film.

This arched structure makes better use of the temperature differential between human body and environment. The resulting body heat generator achieves world-record for power output for its class -- sufficient to operate small devices like electronic watches and hygrothermographs.

This study successfully applies thermoelectric conversion technology to flexible power-generating devices, offering an efficient and sustainable energy solution for smart wearables, said Ding Fazhu, a researcher at the institute.

The research findings were published in the journal Nature Communications.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 呼图壁县| 赤峰市| 上虞市| 弥勒县| 耿马| 清水河县| 新营市| 仪陇县| 丰城市| 肥城市| 措美县| 苍山县| 乌拉特后旗| 临沂市| 乌审旗| 独山县| 巴里| 山东| 华池县| 泾川县| 邵东县| 宝坻区| 商水县| 奉化市| 太仆寺旗| 连平县| 天祝| 贵南县| 洞口县| 施甸县| 茌平县| 于田县| 河北省| 潼南县| 平凉市| 弋阳县| 呼玛县| 泌阳县| 镇雄县| 调兵山市| 茂名市|