男友太凶猛1v1高h,大地资源在线资源免费观看 ,人妻少妇精品视频二区,极度sm残忍bdsm变态

Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Scientists monitor surface solar radiation via satellite remote sensing

Xinhua | Updated: 2025-04-03 10:06
Share
Share - WeChat

BEIJING -- A geostationary satellite network observation (GSNO) system has been developed to precisely monitor changes in surface solar radiation by introducing satellite remote sensing technology, according to the Aerospace Information Research Institute (AIR) under the Chinese Academy of Sciences.

Serving like a "sunlight scanner," the GSNO system can provide more precise data support for sectors such as clean energy application, agricultural yield estimation and climate change response, as well as public health, said the institute.

The study was led by AIR researchers and conducted in collaboration with researchers from multiple institutions, both at home and abroad. The study results have been published in the journal The Innovation.

Surface solar radiation is a general term for the solar radiation components received by the Earth's surface, including ultraviolet rays, visible light, infrared and other electromagnetic radiation of different wavelengths. Therefore, it is a key factor affecting climate change, agricultural production and solar energy application.

"Satellite remote sensing technology features strong data continuity and wide coverage. It is one of the most effective means to monitor changes in surface solar radiation," said Husi Letu, AIR researcher and leader of the study.

Notably, the study team integrated multiple new-generation geostationary satellites into the GSNO system.

Through multi-satellite networking, this system has achieved high spatiotemporal resolution monitoring at a near-global scale with enhanced detection accuracy.

"At present, the GSNO system can provide near-global scale surface solar radiation monitoring data with a spatial resolution of 5 km and an observation frequency of once per hour," according to Shi Chong, an AIR researcher.

For example, short-wave radiation data can sustain the effective use of solar energy resources. Photosynthetically active radiation data can provide a new basis for agricultural yield estimation and ecological carbon sink estimation, while ultraviolet data is expected to be applied to public health, Shi explained.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 武清区| 昭觉县| 永城市| 定结县| 射阳县| 阿克| 高要市| 洛浦县| 大同市| 宜宾县| 威信县| 澄城县| 门源| 荃湾区| 河间市| 甘南县| 横峰县| 南澳县| 隆昌县| 凯里市| 六盘水市| 平邑县| 玉田县| 武安市| 荔波县| 武汉市| 宜丰县| 连城县| 丽水市| 磴口县| 二手房| 育儿| 罗江县| 望城县| 洪泽县| 赞皇县| 吐鲁番市| 青浦区| 疏勒县| 榕江县| 尉犁县|