男友太凶猛1v1高h,大地资源在线资源免费观看 ,人妻少妇精品视频二区,极度sm残忍bdsm变态

Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Scientists synthesize single-crystal sp2 carbon-linked covalent organic frameworks

chinadaily.com.cn | Updated: 2025-01-17 21:32
Share
Share - WeChat
[Photo provided to chinadaily.com.cn]

Chinese scientists proposed a novel imine-to-olefin transformation strategy to synthesize single-crystal sp2 carbon-linked covalent organic frameworks (sp2c-COFs).

COFs are crystalline, porous polymers constructed by organic molecules through strong covalent bonds. COFs have numerous applications, including gas storage and separation, sensing, drug delivery and biomedical applications, organic electronics and photonics, etc.

Sp2c-COFs are a special type of COF that integrates sp2 carbons, attracting great attention in organic semiconductors. The robust C=C bonds endow the sp2c-COFs with enhanced electronic conductivity, optical activity, and magnetic properties in comparison to classical C=N linked COFs.

Highly ordered single-crystal sp2c-COFs play indispensable roles in delving into the molecular structures, fundamental properties, and device application performance of sp2c-COFs. However, the low reversibility of olefin bonds impedes crystal self-correction, thus generating only polycrystalline or amorphous compounds instead of single crystals.

In the study published in Nature Chemistry, a research group led by Prof ZHANG Tao at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS), in collaboration with Prof Zhang Zhenjie at Nankai University, synthesized single-crystal sp2c-COFs through an imine-to-olefin transformation strategy.

The structures of the single crystals were characterized using high-resolution transmission electron microscopy (HR-TEM) and continuous rotation electron diffraction (cRED).

The efficient transformation from imine to olefin linkage enhances the π-conjugation in sp2c-COFs, facilitating extensive electronic delocalization. Compared to samples with C=N linkages, the synthesized single-crystal sp2c-COFs exhibit significantly enhanced electron spin, leading to notable room-temperature, metal-free ferromagnetism of 8.6 × 10?3 emu g?1.

Two high-quality single-crystal sp2c-COFs have been developed, demonstrating the generality of this approach. This work addresses the bottleneck in synthesizing single-crystal COFs and provides insight into the future development of organic semiconductor applications.

The study was funded by the National Natural Science Foundation of China (No 52322316), the Zhejiang Provincial Natural Science Foundation of China (No LR21E030001), and the Key Research and Development Program of Ningbo (No 2022ZDYF020023).

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 名山县| 合肥市| 卢湾区| 永泰县| 宁津县| 郓城县| 潢川县| 涡阳县| 灌云县| 耒阳市| 大城县| 兴化市| 镇原县| 伊宁市| 康马县| 安福县| 泽州县| 湘阴县| 澎湖县| 信阳市| 磐安县| 陇西县| 西藏| 叶城县| 蓬莱市| 鹤庆县| 垫江县| 武陟县| 元氏县| 富顺县| 乐山市| 德安县| 麻江县| 莎车县| 凤台县| 榆社县| 山丹县| 定西市| 多伦县| 射阳县| 监利县|