男友太凶猛1v1高h,大地资源在线资源免费观看 ,人妻少妇精品视频二区,极度sm残忍bdsm变态

Global EditionASIA 中文雙語Fran?ais
World
Home / World / Vision China

Laiye discusses language models

By ZHU WENQIAN | China Daily Global | Updated: 2023-05-19 09:30
Share
Share - WeChat
Pierre Pakey

Pierre Pakey, head of product innovation at Laiye Technology (Beijing) Co Ltd, shared his thoughts about how large language models, a new path in artificial intelligence, can mimic human minds in some ways during the latest Vision China.

Previously, the most common way to train AI was to give it plenty of examples, a process called supervised training.

With the new approach of descriptive training, AIs are trained in the same way humans would be, by describing the task that requires completion in natural language, Pakey said.

Taking the example of intelligent document processing, where the goal is to extract key information such as issue dates, supplier addresses and vendor names from an invoice, he said that the common way of training involves feeding the AI thousands of invoices.

But as invoices vary, one of the issues is physically pinpointing the positions of each piece of information on the documents in order to train the language model. This process is both slow and prone to errors, Pakey said.

"With descriptive training, people just describe what they want in plain language. So it's extremely simple and it completely changes the time necessary to actually launch a new AI and train on a new task," he said.

With descriptive training, users must ask themselves what the best question is, and what is the best way of asking the model to perform the desired task. This process is called prompt engineering.

"The first time we launched a large language model in production, we had very disappointing accuracy, meaning that our metrics were telling us this was a bad model. When we dove deeply to understand why our accuracy was poor, we noticed that the model was still doing better than the human laborers it was ranked against," he said.

The large language model needed to handle hundreds and even thousands of different examples, and in this situation, it did better than human workers at labeling.

As with any AI model, its accuracy did not exceed 95 percent, and Pakey said that if users needed further improvements, it was only a question of aligning expectations and of being very clear about what information they wanted to extract.

Large language models still have limitations. They need to be given time to produce a good answer, and when prompting different models for an answer, it's important to bear in mind the trade off between complexity and accuracy, Pakey said.

"But most importantly, they are able to learn new tasks almost instantly, and that makes this one of the most exciting things that we have seen in AI in a long time."

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
主站蜘蛛池模板: 辽阳县| 社旗县| 东城区| 榆林市| 张家口市| 乐昌市| 南昌县| 漠河县| 永寿县| 德保县| 沙坪坝区| 双江| 洛川县| 松溪县| 静乐县| 炉霍县| 梅河口市| 微博| 济南市| 黄陵县| 视频| 射阳县| 衡阳县| 旺苍县| 佛坪县| 宜春市| 罗江县| 靖远县| 灵璧县| 文成县| 晋江市| 黎城县| 永福县| 巫溪县| 年辖:市辖区| 沂源县| 徐州市| 雅江县| 新乡县| 嵊泗县| 依安县|